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We report a detailed comparison of a slow gravity driven sheared granular flow with a computational model
performed with the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS). To our knowl-
edge, this is the first thorough test of the LAMMPS model with a laboratory granular flow. In the experiments,
grains flow inside a silo with a rectangular cross-section, and are sheared by a rough boundary on one side
and smooth boundaries on the other sides. Individual grain position and motion are measured using a parti-
cle index matching imaging technique where a fluorescent dye is added to the interstitial liquid which has the
same refractive index as the glass beads. The boundary imposes a packing order, and the grains are observed to
flow in layers which get progressively more disordered with distance from the walls. The computations use a
Cundall–Strack contact model between the grains, using contact parameters that have been used in many other
previous studies, and ignore the hydrodynamic effects of the interstitial liquid. Computations are performed
to understand the effect of particle coefficient of friction, elasticity, contact model, and polydispersity on mean
flow properties. After appropriate scaling, we find that the mean velocity of the grains and the number density
as a function of flow cross-section observed in the experiments and the simulations are in excellent agreement.
The mean flow profile is observed to be unchanged over a broad range of coefficient of friction, except near
the smooth wall. We show that the flow profile is not sensitive to at least 10% polydispersity in particle size.
Because the grain elasticity used is smaller in the computations as compared with glass grains, wave-like fea-
tures can be noted over short time scales in the mean velocity and the velocity auto-correlations measured in
the simulations. These wave features occur over an intermediate timescale larger than the particle interaction
but smaller than the timescale of the macroscopic flow features. The wave features become more prominent as
grain elasticity is further reduced. We then perform a detailed comparison of the particle fluctuation properties
as measured by the displacement probability distribution function and the mean square displacement. Excellent
agreement is observed over a time interval over which particles can be tracked effectively in the experiments.
Using the longer tracking intervals possible in the simulations, we find that the diffusion in the layers is greater
in the flow direction, than in the perpendicular direction. Further signatures of confinement and hopping be-
tween layers is observed. All in all, our study provides strong support for the LAMMPS model of granular
flow, and further supports the hypothesis that the interstitial liquid has negligible effects on granular fluctuations
provided the flow is slow.

I. INTRODUCTION

Granular flow is important in a number of industrial and
geophysical phenomena but a well-established description of
its properties does not exist. Although typical granular sys-
tems are composed of many particles, a hydrodynamic theory
and a length scale other than the particle diameter has not been
consistently identified, prompting a large amount of research
interest in the past two decades and a variety of theoretical
advances [1–6]. In addition to the development of new exper-
imental techniques, computational models have been an in-
valuable tool in understanding granular flow, because they can
provide complete information about a particle system, without

∗Electronic address: chr@math.berkeley.edu
†Electronic address: av.orpe@ncl.res.in
‡Electronic address: akudrolli@clarku.edu

the experimental difficulties in measurement.

However, simulating granular flows is difficult due to
the problems of correctly capturing the physics of strongly-
interacting hard particles. One approach is to carry out event-
driven simulation of perfectly rigid particles undergoing in-
elastic collisions [7, 8] although this can be problematic when
dealing with static regions, where “inelastic collapse” can take
place [9, 10]. An alternative approach is the Discrete-Element
Method [11], making use of a fixed timestep and modeling
particle contacts by applying a stiff spring in the normal direc-
tion (with potentially other forces, such as friction and viscous
terms). This approach can handle static packings and long-
lasting particle contacts, but the stiffness of the equations re-
quires a very small timestep to integrate accurately, making it
computationally intensive, often requiring parallel simulation
for problems of a practical size. Consequently, some approx-
imations and simplifications are made in the contact models.
It has been the authors’ experience that this can often lead to
skepticism in the presentation of simulation results, as to what
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extent the contact model captures the underlying physics.
In this paper, we attempt to address these issues by di-

rectly comparing a three dimensional (3D) Discrete Element
Method (DEM) simulation to a gravity driven granular flow,
sheared by a rough boundary wall inside a silo. Boundary
generated shear is fairly common in granular flows and gives
rise to a localized shear region, which is excellent for testing
flow in the bulk, as well as boundary conditions. This sys-
tem, presented in detail in Subsec. II A, was used recently to
measure particle velocity auto-correlations [12] with an index
matching technique developed for measuring the motion of
individual particles inside dense flows [13–15]. In that study,
it was assumed that the flow and strain rate was small enough
that the drag and lubrication forces caused by the presence
of the interstitial liquid on the particle motion was negligible
compared with the gravitational force acting on the particles.
Thus, a comparison of the simulations with the experiments is
not only a physical test of the numerical model but also a test
of this hypothesis.

For the DEM simulation, we make use of the granular con-
tact model that is part of the Large-scale Atomic/Molecular
Massively Parallel Simulator (LAMMPS) developed at San-
dia National Laboratories [16]. This simulation code is well-
developed and has been used by many authors over a number
of years [17–32]. It employs a modified version of a con-
tact model originally employed by Cundall and Strack [33] for
the simulation of cohesionless particulates, featuring a normal
elastic interaction, viscoelastic terms, history-dependent tan-
gential forces and a Coulomb friction criterion. Much of the
original calibration of the physical parameters in this model
was done by Silbert et al. [17] in the context of avalanching
flow, making use of 2D and 3D studies with up to 24,000 parti-
cles; it was later considered by Landry et al. [18] in examining
static particle assemblies. Perhaps the largest approximation
of the contact model is in the normal spring constant, which is
four to five orders of magnitude smaller than what would be
realistic for everyday hard materials. Since DEM simulations
of this type are usually compared to experimental and theoret-
ical results for dense granular flows of hard materials such as
rock or glass, it would be advantageous to have a higher spring
constant. However, due to computational limitations it could
not be set higher, but it was found that the value used was large
enough to capture the physics of the avalanching flow without
too many detrimental elastic effects. Silbert’s calibration was
incorporated into LAMMPS, and thus many of the subsequent
studies cited above have made use of exactly the same param-
eters in the contact model, albeit with minor variations.

While testing the efficacy of any DEM simulation is inter-
esting, we believe it is particularly useful to carry out a de-
tailed analysis of the LAMMPS contact model, since the re-
sults are of direct relevance to the studies above. We note that
Ref. [17] concentrates on macroscopic features of flow av-
eraged over many particles, while Ref. [18] considers static,
microscopic features. However, there is also much interest
in quantities that are both microscopic and dynamic, such as
velocity auto-correlations which impact calculations using ki-
netic theory approach [34–36], and we ask to what extent the
contact model can capture such correlations. We also note that

the original calibration made use of 24,000 particles, but ad-
vances in computer technology mean that simulations of ten to
twenty times the number of particles are now considered [19],
and we examine whether the contact model remains valid for
larger system sizes. By making direct, quantitative compar-
isons at the microscopic level to the index-matched experi-
ment, we are able to address in detail if the simulation repro-
duces the essential physics of granular flow.

Our paper proceeds as follows: in Section II we describe
the geometry of boundary-generated shear, and discuss in de-
tail the methods used in the index-matching experiment, and
the DEM simulation. In Section III we consider how to best
calibrate the DEM simulation to experiment, by examining the
role of friction, polydispersity, and total flow rate. During the
calibration procedure we found evidence of short-timescale
waves of velocity in simulation, and the presence of these is
discussed in detail in Section IV. With the DEM simulation
as closely matched to experiment as possible, we then make
quantitative comparisons between diffusion, velocity autocor-
relations, and spatial velocity correlations in Section V.

II. METHODS

A. Index-matching experiment

A schematic diagram of the silo with a rectangular cross-
section inside which gravity driven granular flow occurs is
shown in Fig. 1. The silo is filled with soda lime glass beads
with average diameter d = 1.0 mm, and density ρglass =
2.5× 103 kg m−3. The beads exhibit a small amount of poly-
dispersity, with diameters in over a range d ± 0.1 mm, with
a majority (∼ 80%) over the range d ± 0.05 mm. The sides
of the silo are composed of optically smooth transparent glass
plates. A layer of the glass beads is glued to one of the sides
of the silo in order to shear the flow relative to the other sur-
faces. The interstitial space between the grains is filled with a
liquid with the same refractive index as the glass beads. The
liquid has density ρfluid = 1.0 × 103 kg m−3, and viscosity
ν = 2.2 × 10−2 kg m−1 s. Side chambers (which are not
shown in the schematic diagram) allow the interstitial fluids to
redistribute as grains drain from the orifice. A dye added to the
liquid is illuminated by a light sheet of thickness less than 0.1d
and imaged from an orthogonal direction using a 512 × 480
pixel resolution CCD camera, where 20 pixels corresponds to
one d. The particles in an image appear dark against a bright
background with a flat intensity profile across each particle.
We then make use of convolution procedure [37] to convert
each image into a 2D map consisting of bright sharp peaks of
intensity corresponding to particle centers which are then ob-
tained using a centroid algorithm [38]. This procedure yields
particle position in every image to within a twentieth of a par-
ticle diameter. Because of small variations of refractive index
within the glass beads and defects, the accuracy with which
we can determine the position of the particle diminishes with
optical length within the index matched sample. Therefore,
we restrict our data acquisition to a window which is within
30d from a side wall. A sequence of images is recorded in the
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FIG. 1: (Color online) Schematic diagram of the experimental ap-
paratus with a typical image of particles observed in a thin slice in
the shear plane obtained with a fluorescent particle index matching
technique. The co-ordinate system used is also indicated.

region of interest at a frame rate of 60 Hz and particle trajecto-
ries are obtained by comparing the particle centers in consec-
utive images. The particle trajectory data is further analyzed
to obtain mean and fluctuating properties of the flow.

The resulting maximum mean flow velocity of the grains
inside the silo in the region of interest is observed to be ap-
proximately 0.6d s−1 [12]. At these measured velocities, the
Reynolds number Re ∼ vxd/ν is about 10−2, and the ratio
of the viscous drag of the grain to the gravitational force is
estimated to be less than 10−2. The rough boundary is ob-
served to shear the flow more than the smooth boundary. The
resulting strain rate γ̇ has a maximum of about 0.25 s−1. This
maximum strain rate is comparable in magnitude to that in ex-
periments with a plate dragged on a granular bed [14], where
the drag friction experienced by the plate was measured to
be unchanged when the index matching interstitial liquid was
added. Based on these observations, we anticipate that the in-
terstitial fluid does not affect the motion of the particles and
neglect its presence in our simulation model.

B. Discrete-Element simulation

In the simulation, we define lengths in terms of a parti-
cle diameter d, and we define a natural mass unit m. Par-
ticles have unit density, and thus the mass of a particle is

mp = 4π(0.5)3/3 = 0.524m. Gravity g acts in the neg-
ative x direction. Typically, studies of dense granular flow
using LAMMPS have made use of gravity in the negative z
direction, but our alternative choice was made for consistency
with previous papers published using this experimental tech-
nique [12]. Simulation results can then be expressed in terms
of a natural time unit τ =

√
d/g. If a particle and its neigh-

bor are separated by r, and they are in compression, so that
δ = d − |r| > 0, then they experience a force F = Fn + Ft,
where the normal and tangential components are given by

Fn = f(δ/d)
(
knδn−

γnvn

2

)
(1)

Ft = f(δ/d)
(
−kt∆st −

γtvt

2

)
(2)

Here, n = r/|r|. vn and vt are the normal and tangen-
tial components of the relative surface velocity, and kn,t and
γn,t are the elastic and viscoelastic constants respectively.
Two different force models are considered: f(ζ) =

√
ζ for

Hertzian particle contacts and f(ζ) = 1 for Hookean con-
tacts. ∆st is the elastic tangential displacement between
spheres, obtained by integrating tangential relative velocities
during elastic deformation for the lifetime of the contact. If
|Ft| > µ|Fn|, so that a local Coulomb yield criterion is ex-
ceeded, then Ft is rescaled so that it has magnitude µ|Fn| and
∆st is modified so that equation 2 is upheld.

Much of the original calibration of the model parameters
was carried out by Silbert [17], and the reader should refer
here for a detailed discussion. The normal damping term is
set to γn = 50

√
g/d, and then tangential damping is set to

zero for Hookean contacts, and equal to γn for Hertzian con-
tacts. To approximate the Poisson ratio of real materials the
tangential elastic constant is set to kt = 2

7kn. Perhaps the
largest assumption of the model is in the choice of the normal
elastic constant, which is set to kn = 2× 105mg/d. As noted
in the original calibration and in subsequent studies [17–19],
this is significantly lower than what would be realistic for typ-
ical hard materials such as glass, where kn = O(1010mg/d)
would be more reasonable. However, such a constant would
be prohibitively computationally expensive, since the timestep
required must have the form δt ∝ k

−1/2
n . Both Silbert [17]

and Landry [18] discuss that the chosen value of kn is a rea-
sonable compromise, which is small enough to feasibly simu-
late, but large enough to avoid the system exhibiting excessive
elastic effects.

The simulations were primarily carried out on the Min-
iMe64 test cluster at the Lawrence Berkeley Laboratory,
featuring 19 dual-core Intel Xeon nodes with a fiber-optic
Myrinet interconnection. For a typical simulation consid-
ered here featuring 150,000 particles, the MiniMe64 cluster
computed one million timesteps in 4 1

2 hours using 24 pro-
cessors. Additional simulations were carried out on a Mac
Pro with two dual-core Intel Xeon processors, where one mil-
lion timesteps would take 24 hours. The simulation produces
text files of all particle positions at fixed intervals, and these
were subsequently post-processed to analyze many different
aspects of the flow.

The initial packings of particles were created by randomly



4

FIG. 2: (Color online) A typical snapshot of Discrete-Element sim-
ulation, showing only those particles in the test region 80d < x <
100d, |z| < 10d. The white (yellow) particles on the left are frozen
in place to form the rough wall at 0 < y < 1d. The light blue and
dark blue particles are identical in physical characteristics, and ini-
tially form alternating layers of width 5d. This snapshot was taken
at t = 124τ , after the bulk of the packing has dropped by approxi-
mately 5d. The particles next to the rough wall undergo pronounced
shear and form a boundary layer of slower flow.

pouring approximately 147,000 particles at a rate of 201τ−1

from a height of z = 205d. The particles are introduced up
to t = 740τ , after which the system is run until t = 3000τ to
allow them to come to rest. Six different particle models were
considered, the details of which are shown in Table I. The
main analysis was carried out with model B and unless other-
wise stated, the results presented refer to this. The remaining
models were used to analyze specific physical effects.

To create a rough wall analogous to that in the experiment,
all particles whose centers satisfy y < 1d are frozen in place,
so that their translational and angular velocities are kept at
zero throughout the simulation. In the pouring process, the
particles next to the walls are highly ordered, so it is worth
noting that the vast majority of frozen particles lie close to y =
0.5d, giving a surface very similar to the glued particle layer
used in experiment. For example, in model B there are a total
of 413 frozen particles in the test region 80d < x < 100d,
−10d < z < 10d and of these 373 (90.3%) have centers in
the range |y−0.5d| < 0.025d, while 402 (97.3%) have centers
in the range y < 0.75d.

The drainage process is initiated by creating a 6d-wide slit
in the center of the container base. To create as realistic a
match to the experimental geometry as possible, the slit is
modeled as a physical body filling the region −5d < x < 0,
|z| > 3d, and all possible contacts with this body are con-
sidered, including the side walls of the orifice at |z| = 3d,
and with the orifice edges at |z| = 3d, x = 0. Each type of
wall in LAMMPS is handled by a function which returns the

Model Contact type Diameter range kn (mg/d) µ

A Hookean d 2× 105 0.2
B Hookean d 2× 105 0.3
C Hookean d 2× 105 0.4
D Hookean d 2× 106 0.3
E Hertzian d 2× 105 0.3
F Hookean 0.95d to 1.05d 2× 105 0.3

TABLE I: Detailed information about the six particle packings that
were created and analyzed in this study.

minimum separation vector from the wall to a particle center,
so that a contact can be detected when the magnitude of this
vector is less than the particle radius. The slit computation is
carried out by adding a custom wall object to the code which
correctly computes this distance, by first determining which
part of the slit the particle is closest to. In the simulation, par-
ticles which fall below x < −10d are removed and no longer
considered.

III. CALIBRATION OF DEM TO EXPERIMENT

A. The effect of friction

Before carrying out the bulk of the analysis, an initial study
was done to ensure that the DEM simulations matched the
experiments as closely as possible. To begin, drainage simu-
lations were carried out using the particle models A, B, and C
to investigate the effect of friction. For these simulation runs,
snapshots of all particle positions were output at intervals of
∆t = 2τ . After an initial transient period of acceleration last-
ing until t = 300τ , the top surface of the particle packing in
these three runs descends at roughly constant velocity. Over a
long time window (300τ < t < 2000τ ) the top surface closely
follows the linear relationship xtop = 163d − 0.0584t (d/τ).
Thus, to avoid any effects of the free surface, all data analy-
ses were carried out over the time interval 300τ ≤ t ≤ 900τ .
At the end of the time window at t = 900τ , the free surface
is at 110d, giving a ten particle buffer zone to the spatial test
region.

For the three runs with different friction parameters, ve-
locity profiles in the test region were computed across the y
direction. If a particle is at xn at the nth timestep, and at
xn+1 at the (n + 1)th timestep, then it makes a contribution
to the velocity profile at (xn + xn+1)/2, with a velocity of
(xn+1 − xn)/∆t. These velocities are stored in uniformly
spaced bins and averaged. Figure 3(a) shows the three com-
puted velocity profiles, when normalized and compared to ex-
periment. In the shearing region near the rough wall, the pro-
files are almost identical, and closely match that seen in ex-
periment. The weak dependence on friction is unsurprising,
as previous studies have shown that much larger ranges for
µ can have very little effect on macroscopic flow features in
the bulk [20], since geometrical packing constraints play the
dominant role; seeing a larger effect may require more signif-
icant changes in the material, such as using rough or angular
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particles.
However, it is surprising that the three runs exhibit differ-

ent flow profiles at the smooth wall. For µ = 0.2, there is no
obvious boundary layer of slower velocities, but for µ = 0.3
it becomes apparent, and for µ = 0.4 it becomes more pro-
nounced. Since the µ = 0.3 curve most closely matches the
experimental data, it was adopted for the remainder of this
study. It is worth noting that this value of friction is somewhat
larger than the typical values for glass particles. In experi-
ments with a plate dragged on a granular bed [14] – carried
out using the same type of particles as used here – the effec-
tive friction was found to be in the range of 0.15 to 0.2 near
a smooth boundary. However, it may not be possible to make
a direct comparison to this work, since the confining pressure
was different, and the boundary was held at a fixed for rather
than fixed space condition. Motivated by consistency with ex-
perimental data, we made use of µ = 0.3 in the subsequent
work.

B. Layer positions and velocities

Much of the subsequent analysis is carried out in the shear-
ing region near the rough wall, and in this section the po-
sitions and velocities of the grains are examined, using the
chosen value of µ = 0.3 in simulation. To illustrate and de-
termine the positions of the layers, the particle number den-
sity was computed, and is shown in Fig. 4 for experiment and
simulation, near the rough wall and near the smooth wall.
In general, good agreement can be seen between the flow-
ing states in simulation and in experiment. The peaks in
the number density correspond to the layers of particles, and
they are in very similar locations in experiment and simula-
tion. To precisely determine the layer positions in simula-
tion, Gaussians were locally fitted to the peaks in the num-
ber density. During flow, the first four layers are located at
(y1, y2, y3, y4) = (1.41d, 2.30d, 3.18d, 4.03d) corresponding
to an average separation of 0.87d.

A number density plot for the static initial packing is also
shown in Fig. 4. Since this is based upon the single ini-
tial particle snapshot, rather than a time-average, the com-
puted curve is noisier, and has to be computed using a larger
bin size. Local Gaussian fitting gives the first four layers at
1.35d, 2.18d, 3.00d, 3.80d, corresponding to an average sepa-
ration of 0.82d, suggesting that during flow, the particle lay-
ers expand slightly, allowing more space for particles to move
past one another. Near the smooth wall, the static and flowing
number density plots are very similar.

Subsequent computations within layers were carried out
over the ranges |y − yi| < 0.3d, where the width was chosen
to match the experimental tolerance in the image processing.
In experiment, the location yi of the laser sheet was manually
aligned so that the most grains were visible within each layer.
The mean velocity component in the z direction and in the
x direction in Layers 1 and 4 are also shown in Fig. 3(b,c).
Very good agreement is observed over the spatial range over
which experimental measurements could be made with the in-
dex matching technique.
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FIG. 3: (Color online) (a) The vertical component of the velocity vx

as a function of the y coordinate in the region 80d < x < 100d
for different values of particle friction µ. The shearing region next
to the rough wall at 0 < y < 1d is almost unchanged for the three
different friction values, while the profile near the smooth wall at
y = 13.5d is slightly affected. (b) The z component of velocity
within layer centered at y1 and y4, as a function of the z coordinate.
(c) x velocities as a function of the z coordinate.
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FIG. 4: (Color online) Plots of the number density (the number of
particle centers per unit volume) in the shearing region, as a function
of the y coordinate. Plots during the flowing regime for the monodis-
perse and polydisperse runs are shown, using data from all snapshots
in the range 300τ < t < 900τ and a bin size if 0.02d in the y
direction. For the polydisperse plot, the contribution to the number
density from each particle is weighted proportional to its volume.
An additional plot for the static monodisperse packing is also shown
using a bin size of 0.08d.

For subsequent analysis of the fluctuation properties, it was
also important to determine the background velocity within
each layer. To do this, average velocities were computed for
each frame. In simulation, this was done using the method
discussed in Subsec. III A, based upon successive snapshots
between frames. Figure 5(a) shows the computed velocity
as a function of time. Over the range 0 ≤ t < 100τ , the
speeds in the four layers begin to increase, as the particles in
the test region begin to move, in response to the orifice be-
ing opened. After t = 100τ , an approximate steady state
in velocity is reached, although until t = 300τ , the speeds
in the four layers appear to decrease slightly. We there-
fore chose to start making our subsequent measurements at
t = 300τ after which the average velocity appears roughly

constant. Coupling this with the restriction of the previ-
ous section gives a time window of 300τ < t < 900τ
that was used in much of our subsequent analysis. Within
this window, the overall mean velocities were determined to
be −0.0372d/τ,−0.0617d/τ,−0.0718d/τ,−0.0756d/τ re-
spectively for the four layers.

While Fig. 5(a) shows a well-defined average velocity in
each layer after t > 300τ , there are surprisingly large varia-
tions on the order of 20% from one frame to the next. Fur-
thermore, these variations appear to be strongly correlated be-
tween the layers. To illustrate this clearly, we have plotted
the velocity component corresponding to neighboring layers
in Fig. 5(b). The “noise” is clearly correlated between layers
and upon closer examination was found to be due to complex
waves of velocity on a short timescale. Because, this has a
significant effect on many of the subsequent simulation mea-
surements, it is discussed in detail in section IV. Coupled with
the previous restriction from subsec. III A, this gives a stan-
dard time window for carrying out steady-state computations
in simulation of 300τ < t < 900τ .

The background velocities in the test region within each
layer also show noticeable spatial variations both in experi-
ment and simulation. Figure 3(b) shows the z velocities as
a function of z across the test window for layers 1 and 4,
for experiment and simulation, scaled according the the max-
imum downwards velocity in each layer. There is clear gradi-
ent across the window on the order of ±5%, and good agree-
ment between experiment and simulation. Figure 3(c) shows
the x velocities across the test window for each layer, this
time scaled by the maximum velocity in the fourth layer to
highlight the relative velocities between the layers. Again, we
see good agreement between experiment and simulation, with
slightly faster flow in the center of the test window than at
the edges. These results are typical of drainage in wide rect-
angular hoppers [39] which tend to exhibit velocity profiles
that spread with increased height near the orifice [40–42], al-
though a precise comparison cannot be made to this previ-
ous work, as the rough wall used in the current study may
have a strong effect on the flow. It is notable that the curves
in Figs. 3(b) and 3(c) exhibit a significant amount of noise,
even with a relatively coarse bin size of 0.5d using data from
301 snapshots. This may be due to the precise structure in
the rough wall surface, introducing small fixed variations in
velocity that are not removed by more time-averaging. This
would be consistent with x velocities in Fig. 3(c) becoming
more uniform for the higher-numbered layers, since those are
further away from the rough surface and are less affected by
its anisotropies.

C. Polydispersity

As previously noted, the glass particles used in the experi-
ment exhibit a slight amount of polydispersity, with a diame-
ter range of ±10% with the majority in ±5%. While this is a
relatively small range, it has been widely reported that flows
in polydisperse particle packings can often exhibit fundamen-
tally different behavior than monodisperse packings, as size
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FIG. 5: (Color online) (a) Background velocities on a scale of 2τ .
(b) Background velocities on a scale of 0.01τ . The three vertical
gray lines correspond to the times of the particle snapshots in Fig-
ure 10. (c) Variations in x and y background velocities computed on
a timescale of 0.01τ for two typical layers.

.

variations decrease the tendency of particles to form regular
crystalline arrangements. Such effects are particularly strong
in two dimensional studies [43], and this plays a much weaker
role in three-dimensional situations, where there is more geo-
metrical freedom. For example, Tsai and Gollub [37] showed
that crystallization in 3D monodisperse packings would only
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FIG. 6: (Color online) Velocity profile comparison for several differ-
ent drainage simulations using particle model B, with friction coef-
ficient 0.3. Plots for monodisperse and polydisperse runs are almost
identical. A simulation with slower flow (created by inhibiting par-
ticle outflow at the orifice) is also almost identical once rescaled by
the bulk velocity.

occur after many hours of shearing. To check the effect of par-
ticle size, a drainage simulation was carried out using model
F using particle diameters uniformly distributed over 0.95d to
1.05d.

Figure 4 shows a comparison of the number density as a
function of the y coordinate, for the monodisperse model B,
and the polydisperse model F. The curves appear almost iden-
tical, which is surprising, as it might be expected that poly-
dispersity would smear out the peaks in the number density.
The vertical velocity profiles, shown in Fig. 6 are also identi-
cal, almost to the level of statistical noise. Further measure-
ments, not presented here, also showed near-perfect agree-
ment. Since polydispersity introduces an additional numerical
complication, and gave near-identical results, we therefore de-
cided to concentrate on the monodisperse results, particularly
since most previous studies using the LAMMPS code have
used monodisperse particles.

D. Total flow rate

To directly relate the timescales in the simulation to the ex-
perimental results, the simulation time unit τ can be computed
in terms of physical particle diameter and the effective gravity
of the system that takes into account the upthrust on the parti-
cles due to the relative densities of the particles and the fluid.
The effective gravity is

geff = g

(
1− ρfluid

ρglass

)
= 5.9 m s−2

and thus τ =
√
d/geff = 0.013 s. Using this, the downwards

velocity in the bulk of the packing, using data from figure 3(a)
over the range 6d < y < 10d, corresponds to 5.9×10−1 cm/s.

In reality, the bulk downwards velocity in experiment in
the region of interest is approximately 6 × 10−2 cm/s, which
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significantly differs from the simulation result. As argued in
Subsec. II A, the Stokes drag of the beads moving through
the interstitial liquid is small compared to the gravitational
force acting on the beads because the particles move slowly.
However, in the orifice and in the converging flow region near
the orifice, the grain flow velocity is about ten times faster
than in the regions well above orifice where the flow is spread
over wider cross-sectional area. Therefore, near the orifice the
fluid forces may not be negligible, thus choking the flow and
reducing the overall drainage rate, which in turn sets the bulk
velocity in the test region.

Since a restricted flow at the orifice could potentially af-
fect the simulation results in the test region, we carried out
an additional drainage run, using particle model B, with a
lower orifice outflow. An obvious method for reducing the
outflow would be to make the exit slit thinner, but this is not
feasible, since the granular packings tend to jam and flow in-
termittently for orifice sizes smaller than 5d. To circumvent
this problem, we kept the slit the same size, but restricted
the velocities of particles in the orifice, so that those in the
range −5d < x < −d would have their velocities enforced
to v = (−0.20d/τ, 0, 0). This simple process works effec-
tively, and creates a smooth outflow, with a bulk downwards
velocity in the test region of 0.0164d/τ , which is a precisely
a factor of 4.73 from the corresponding unrestricted case. If
the velocities are rescaled by this factor, then the velocity pro-
file in the test region in the y direction closely matches with
the unrestricted case as shown in Fig. 6. This points strongly
to rate independence, that scaling the total flow rate results
in a rescaling of the time variable, but does not create large
changes in the particle dynamics. Such rate independence
has noted in other studies in flows inside silos [15, 30, 44],
where particle diffusion was shown to be a function of dis-
tance dropped, as opposed to total flow rate. It provides fur-
ther justification for making comparisons between experiment
and simulation, by scaling out the overall flow rate. The pres-
ence of rate-dependent effects in granular materials has been
reported [22, 45], but this may only become important for
larger values of strain rate.

IV. TEMPORAL FLUCTUATION OF THE PARTICLE
VELOCITIES

Figure 5(a) showed the presence of large variations in back-
ground velocity between successive frames, that was corre-
lated between layers. However, the timescale of 2τ between
frames is too coarse to properly resolve this behavior, so an
additional run was carried out using 10,000 snapshots at in-
tervals of 0.01τ , over the range 500τ < t < 600τ . Fig-
ure 5(b) shows part of the computed background velocities
on this scale, showing unsteady oscillations in velocity, that
are strongly correlated between layers. On this timescale, the
differences in velocity become even more pronounced, with
velocities in the fourth layer oscillating over a large range
−0.15d/τ < vx < −0.01d/τ . While the minima of the os-
cillations take different values of vx, the maxima take values
that are close together.
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FIG. 7: (Color online) The background velocity observed in the ex-
periments on timescales corresponding to a mean drop of grains over
a distance of (a) 0.01d, (b) 0.1d, and (c) 0.5d.

Figure 5(c) shows plots of typical y and z velocity averages
on the 0.01τ timescale over the same time interval, which dis-
play a very different structure to the x variations. The scale of
this plot is much smaller, and the structure mainly appears to
be due to random statistical variation. There is no obvious
wave-like behavior, and no strong correlation between lay-
ers, although it is noteworthy that the biggest velocities are
approximately correlated with the largest velocity waves in
Fig. 5(b).

Because these waves occur on short timescales, it is pos-
sible that the integration timestep may play a role. How-
ever, simulations making use of ∆t = 5 × 10−5τ and
∆t = 2.5 × 10−5τ show no appreciable difference in the
wave structure. To more carefully quantify the differences
between the velocities in each coordinate a Discrete Fourier
Transform (DFT) was carried out using the data from the fast
run. If the computed velocities in a layer are denoted by vn

for n = 0, . . . , N − 1 where N = 10, 000, then the DFT is
computed as

Vk =
N−1∑
n=0

vne
− 2πi

N kn.

Figure 9(a) shows the magnitude of the first four hundred
Fourier modes for velocities in each of the three coordinates.
For this plot, we made use of velocities in the third layer,
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although data from all layers shows the same picture. For
n ≥ 150, the modes for all three curves are similar in struc-
ture, suggesting that the short-timescale statistical noise is
similar in all three directions. However, for the x velocity
data, there is a pronounced region of modes from n = 10
to n = 50, corresponding to wavelengths in the range 2τ to
10τ , which appear to correspond to the oscillations seen in
Fig. 5(b).

In the experimental data, there are also variations in mean
velocity in the x direction, and a selection of these is shown in
Fig. 7 for three different timescales corresponding to a mean
particle drop of 0.01d, 0.1d, and 0.5d between frames. The
plots also show variations, but these appear to be more con-
sistent with random noise, and show no evidence of unsteady
oscillations and no correlation between layers. The absence
of these oscillations in experiment suggest that they are most
likely attributed to the approximations made in the simulation
contact model, such as the normal spring interaction being
smaller than realistic values. However the oscillations that
are seen are not pure elastic modes due to the particle con-
tact model. The natural frequency associated with the normal
spring interaction is

t =
2π√

kn/mp − γ2
n/16m2

p

= 0.0324τ,

which is significantly smaller than the scale observed here.
Waves on the elastic timescale can be seen in simulation, but
only by looking at even shorter snapshot intervals. The behav-
ior of Fig. 5(b) happens on an intermediate timescale, larger
than the particle interaction timescale, but smaller than the
timescale of the macroscopic flow features.

To investigate the importance of the details of the contact
model, two more short runs with 10,000 snapshots were car-
ried out, using particle model D with kn = 2×106mg/d, and
particle model E with Hertzian contact forces. Although the
extra factor of

√
δ/d in the Hertzian contact model precludes

the assignment of a single natural frequency to the particle
interaction, we expect that elastic oscillations will happen on
a longer timescale, as the factor will be always smaller than
1. Figure 8 shows plots of the background velocity in the
test region for the four layers for these two simulations. For
the higher spring constant, the waves are smaller in magni-
tude and happen on a faster timescale, while for the Hertzian
contacts, the waves are larger and slower, to a level where oc-
casionally (such as at t = 523.5τ ) the mean velocity points
upwards. Discrete Fourier Transforms of these two runs con-
firm this: for the Hertzian simulation (Fig. 9(b)) the modes are
larger and shifted to the left, while for the high spring constant
(Fig. 9(c)) the modes are smaller and cover a wider range of
frequencies.

The correlation between the contact model and the veloc-
ity wave timescale strongly suggests that while the oscilla-
tions are not directly attributable to the the normal spring con-
stant, they are an indirect manifestation of it. Such behavior
has been noted in previous Discrete-Element simulations, al-
though the precise reason is unclear. Figure 10 shows a plot of
snapshots in the four layers for three different times that cor-
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FIG. 8: (Color online) (a) Variations in z velocities computed on a
timescale of 0.01τ for a drainage simulation with a Hertzian contact
model (thin lines), and a contact model using a normal spring co-
efficient of kn = 2 × 106mg/d, a factor of ten bigger than usual
(heavy lines). (b) Background velocities in the kn = 2 × 105mg/d
simulation in layer 3, computed in ten strips of width 10d in the x
direction, on a timescale of 0.01τ . The lowest and highest strips are
highlighted, and the intermediate strips show a steady progression
from noisy random walk behavior to wave-like behavior.

respond to the vertical gray lines in Figure 5(b) that happen
before, during, and after a large oscillation. The wave affects
all layers, although the differences are largest in the layers
furthest from the wall. Clusters of faster and slower moving
particles can be seen, sometimes across several layers. This
complex behavior is perhaps indicative of periodic relaxation
events, where built-up energy is released as particles are re-
configured. The complex spatial structure of the waves makes
them hard to deal with using a simple mean velocity subtrac-
tion. It is also undesirable that some particles end up moving
upwards, as particle contacts may break and re-form, resetting
the history-dependent terms in the contact model.

To examine the origin of the velocity waves, the back-
ground velocity in the third layer was computed in ten dif-
ferent horizontal strips of width 10d from x = 0 to x = 100d,
over the central section of the packing |z| < 10d, and the re-
sults are shown in Figure 8(b). Near the orifice, over the range
0 < x < 10d, the variations in velocity do not exhibit the
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FIG. 9: (Color online) The magnitudes of the first four hundred Dis-
crete Fourier Transform modes, for velocities in all three directions,
computed in the third layer, for (a) the original simulation, (b) the
Hertzian simulation, and (c) the high spring constant simulation with
kn = 2× 106mg/d.

wave-like behavior. However, in the higher strips, the waves
of velocity become progressively more pronounced, suggest-
ing a positive feedback mechanism; similar behavior has been
noted in other larger 3D simulations in cones [21]. Since the
waves take time to propagate upwards through the container,
the curves in Figure 8(b) are also shifted rightwards from strip
to strip. The fact that the waves become more pronounced in

the higher parts of the container points to the overall system
size as being a major factor, since a smaller simulation would
not give the waves enough range to develop.

The presence of these oscillations must be carefully consid-
ered in the subsequent analysis. They are an undesirable fea-
ture when comparing with grains composed of hard materials
like glass, and keeping the spring constant as high as possi-
ble may help, since the faster and smaller waves are easier to
time-average. However, with the current numerical capabili-
ties, it is impossible to eliminate them, so the best approach is
to appreciate their scale and structure, and make sure that any
computed statistics are influenced by them as little as possible.

V. ANALYSIS

A. Particle diffusion

In the previous section, it was shown that the monodis-
perse particle packing with a friction coefficient of µ = 0.3
and a normal spring constant of kn = 2 × 105mg/d gave a
good match of overall flow characteristics. We now proceed
to make use of this model to evaluate and compare the amount
of particle diffusion in experiment and simulation.

A precise description of granular diffusion is difficult.
There is no thermal equilibrium in the conventional sense, and
particle rearrangement only occurs in response to outside forc-
ing. At sub-particle length scales there is no Brownian mo-
tion, but rather particles move in response to collisions with
their neighbors, and normal diffusion laws only emerge at
longer length scales. Although there has been little precedent
work in this area, the experimental study of diffusion in hop-
per drainage near a side wall by Choi et al. [44] found results
consistent with this picture. They found that mean-squared
displacements of particle positions would scale according to
distance dropped, as opposed to time.

There are also numerous difficulties in mathematically
defining diffusion. A particular challenge rests in how to sep-
arate “particle fluctuations” from the “background flow”. In
Ref. [44], the background flow was computed from a spa-
tially varying mean field v̄(x), but in reality there may also
be large-scale temporal fluctuations in velocity, such as the
elastic wave effects seen in the previous section, that would
be better characterized as a mean flow as opposed to a particle
fluctuation. Also, care must be taken in correctly defining the
ensemble of particle trajectories over which the diffusion mea-
surement is made. A computation of diffusion based on ex-
amining particles that remain within a test box of side length
L, will bias against the more mobile particles that move out-
side the test box, and will never be able to measure diffusion
on scales larger than L. A solution to this is to continue to
track those particles that move outside the test box into a new
region, although this approach requires care, as the particles
may behave differently in that region, and it may not be de-
sirable for the measurement of diffusion to incorporate that
behavior.

Based on these concerns, our general approach to calculat-
ing diffusion has made use of two regions. The first, Rs, rep-
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FIG. 10: (Color) Snapshots of particle positions in the simulation (using contact model B in table I) within the four layers for three different
times, showing velocities computed based on particle displacements on a time interval of 0.01τ . The same color scheme is used in all four
layers, and is expressed in terms of a typical vertical velocity v∗x = 0.03d/τ . The plots show the complexities of dealing with elastic waves
that cause large variations in velocity over short timescales.

resents the region of interest, for which the diffusion measure-
ment is made. Any particle that is within Rs starts making a
particle trajectory. The second regionRc, represents the space
over which the particles are allowed to diffuse. A particle con-
tinues making a trajectory while it remains within Rc, and in
general it should be made as large as possible to minimize
biases. It is restricted either by limitations in the available in-
formation, or because moving to a new region would result in
fundamentally different particle behavior.

Once the collection of trajectories has been defined, the
amount of diffusion over a time ∆t is computed by evalu-
ating all pairs of points (xi,xf ) on the trajectories which are
separated by an amount ∆t, such that the initial point xi lies
within Rs. The initial point of this pair is advected according
to the mean background velocity for an amount ∆t to give a
new point x′

i. The distance between the advected point and
the final point defines a vector ∆x = xf −x′

i, and the amount
of diffusion can be calculated from the variance of all these
computed vectors. If Rs = Rc, then this method becomes
equivalent to just evaluating all trajectories which lie wholly
within the region of interest.

Our first analysis examines the diffusion within each layer,
in the x and z coordinates. In the experiment, where informa-

tion about particles is strictly limited to the field of observa-
tion, we employed Rs = Rc = {80d < x < 100d, |y − yi| <
0.3d, 22d < z < 38d}; since the scale of diffusion is signif-
icantly smaller than the test box size, any introduced biases
will be minimal. As seen from Fig. 3(b,c), the velocities are
reasonably uniform spatially within the test region selected for
calculating the diffusion with slight variations near the border
of the region. To examine this spatial variation in more detail
we reduced the test region, thus eliminating the small vari-
ations in velocities, but found no appreciable changes in the
diffusion measurements. Having confirmed the near homo-
geneity of the velocities in spatial directions, a background
velocity was taken as a single mean downwards velocity per
frame to account for the temporal variations. Plots of the
PDFs of the displacements after 1d of mean drop in the x and
z directions are shown in Figs. 11(b) and 11(c) respectively.
As expected, the fluctuations increase for the layers closer to
the wall, where the shear rate is higher. For a normal diffusive
process, the curves would be expected to appear quadratic on
a semi-log plot, but here we see a slower decay and larger
tails corresponding to ballistic motion on a sub-particle length
scale. A distance dropped of 1d is roughly comparable with
the transition from superdiffusive to diffusive behavior ob-
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FIG. 11: (Color online) Plots of the PDFs of particle displacements
∆x after 1d of drop within the test region in the three coordinate
directions for experiment (symbols) and simulation (lines). Layers 1
to 4 are shown with black squares, red circles, green triangles, and
blue diamonds respectively.

served in the work of Choi et al. [44], where measurements
were carried out on particles moving in air next to a side wall.
Also visible is Fig. 11(c) is a small positive skewness, with
more large steps in the positive x direction than in the nega-
tive x direction. This anisotropy is caused by particles falling
under gravity.

In the simulation analysis, Rs is the same as experiment,
while Rc is a slightly larger region, {70d < x < 100d, |y −
yi| < 0.3d, 15d < z < 45d} to reduce any biases associated
with disregarding trajectories crossing the boundary. We in-
vestigated several possibilities for the mean flow subtraction.
If a homogeneous background velocity was employed in the
simulation diffusion calculation, then a superdiffusive scaling
was observed, so that D(t) ∼ Ktα where α > 1 (typically
in the range 1.1 < α < 1.3). This is because the inhomo-
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FIG. 12: (Color online) Plots of the PDFs of particle displacements
∆y and ∆z after 8d of drop within the test region in experiment
(symbols) and simulation (lines). Layers 1 to 4 are shown with black
squares, red circles, green triangles, and blue diamonds respectively.

geneities seen in Fig. 3(b,c) are accounted for in the calcula-
tion of ∆x and ∆z as systematic drifts, which do not obey
normal diffusive scaling. To circumvent this, we employed a
spatially and temporally varying background velocity in the
diffusion calculation. First, a spatial velocity field was cal-
culated in 5d × 3d boxes over Rc, using the standard time
window 300τ < t < 900τ . Second, an overall mean veloc-
ity was computed for each frame. The background velocity
is taken to be the bilinear interpolation of the spatial velocity
field, plus an additional overall temporal correction for each
frame. Using this procedure gives the correct asymptotic be-
havior D(t) ∼ Kt. The PDFs of the displacements after 1d
of mean drop in the x and z directions are shown as lines in
Figs. 11(a) and 11(c) respectively. In both directions and in
all four layers, we see excellent quantitative agreement.

To examine diffusion in the y direction in experiment, we
make use of particle measurements in the yz plane, and con-
sider Rs = Rc = {80d < x < 100d, |y − yi| < 0.5d, |z| <
0.3d}. For the background flow, we make use of a single mean
velocity computed at each frame. Unlike the x and z mea-
surements, this procedure is more susceptible to biases, as the
width of the test region in the y direction is comparable to the
length scales of diffusion. The particles that take large steps
and move between layers will be discounted. Also, Fig. 11(c)
shows that a large number of particles will undergo z displace-
ments that are comparable with the thickness of the viewing
plane, meaning that many particles will be lost when they can
no longer be tracked.
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In simulation, where we have the freedom to track particles
wherever they go, the regions were chosen to remove some
of the above biases. We make use of Rs = {80d < x <
100d, |y − yi| < 0.3d, 20d < z < 40d}, tracking particles
across the entire test region rather than restricting to a single
slice. We choose Rc = {70d < x < 100d, 15d < z <
45d}, continuing trajectories even if they pass from one layer
to another. For the mean velocity subtraction, we make use of
the same procedure as in the xz measurements, combining a
spatial field with a frame-by-frame temporal correction. It is
worth noting that this causes no problem for particles moving
between layers, as for each pair of positions (xi,xf ) that is
considered, the mean velocity is applied to xi which is always
within Rs and hence inside the layer itself.

Figure 11(b) shows a comparison of the y diffusion mea-
surements for experiment and simulation after 1d of drop.
Despite handling particle trajectories differently, there is very
good agreement between the curves, as the particle displace-
ments are small enough that biases do not factor in heavily.
However, the PDFs after 8d of average displacement in the
flow, shown in Fig. 12(a) show large differences. While the
central peaks are similar in size, additional peaks can be seen
in the simulation data corresponding to those particles that
have moved into neighboring layers. This complicated behav-
ior makes it hard to assign a meaningful diffusion constant in
this direction. On the length scales that can be observed, the
PDFs do not appear to tend to anything resembling a Gaus-
sian, and particle motion is a combination of stochastic behav-
ior and layer confinement. It is also possible to carry out an
analysis of x displacements using the xy plane measurements.
For these cases, as shown in Fig. 12(b), larger amounts of par-
ticle mixing can be measured, as particles are also separated
due to the velocity gradient between layers.

Figure 13 shows a logarithmic plot of the mean squared dis-
placement Var(∆x) as a function of mean distance dropped
for the three coordinate directions. The x and z plots were
based on measurements in the xz plane, and we see quite good
quantitative agreement in all four layers. As noted by Choi
et al., a transition from superdiffusive behavior with slopes
greater than one, to normal diffusion with slope close to one,
can be seen at a distance dropped of approximately 1d. A
slight disagreement is seen in the z direction, particularly for
layers 1 and 2 for very large displacements (ie. more than 4d),
wherein we see the experimental mean squared displacements
to be slightly higher than in simulations. We believe that this
bias may be introduced perhaps due to loss of particles be-
tween layers over long displacements since the tracking was
done only within one layer. The effect is not seen for lay-
ers 3 and 4 wherein the particle hopping between the layers is
almost negligible. These results probably state the lack of reli-
ability in experiments to determine fluctuations over very long
time scales and displacements, thus stressing the importance
of simulation data over these scales.

The y plot is based on measurements in the xy plane. We
see good agreement for small distances but the curves begin
to diverge for larger distances, due to the simulation methods
counting those particles moving between layers. The plot for
layer 1 exhibits fundamentally different behavior since parti-
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FIG. 13: (Color online) Logarithmic plots of mean squared particle
displacement versus mean distance dropped for the three coordinate
directions, in experiment (symbols) and simulation (lines). Layers 1
to 4 are shown using black squares, red circles, green triangles, and
blue diamonds respectively.

cles can only jump to layers in one direction as opposed to
both. The curves do not exhibit slopes close to one, confirm-
ing that a diffusion constant cannot be meaningfully defined.

Figure 14 shows the computed diffusion constants as a
function of shear rate computed from the mean squared dis-
placement measurements. Roughly linear growth with shear
rate can be seen. However, with only four data points, and
potentially different behavior for the first layer that is next
to the wall, it is hard to say anything conclusive about scal-
ing. Another striking feature of the diffusion constant mea-
surement is that diffusion constant in the flow x direction is
greater than in the flow z direction. Such an anisotropy in the
diffusion constants has been anticipated in sheared athermal
suspensions [34]. Here, we see that such anisotropy persists
in both our numerical and experimental granular systems, and
points to the importance of particle geometry and local pack-
ing in determining local rearrangement and diffusion of parti-
cles rather than details of interaction between particles. Some
differences in the fluctuations of the particles in the experi-
ments and numerics can be observed. But these differences
appear to arise because particles are systematically lost in the
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FIG. 14: (Color online) Diffusion constants in the x and z directions
as a function of shear rate in the four particle layers, for experiment
(a) and simulation (b).

experiments because of limitation of tracking particles over
long time rather than due to physical differences.

B. Velocity autocorrelations

The calculation of the velocity autocorrelation function
ψ(t) for some time t is based upon finding a collection of
velocity pairs (vi,vf ) that are separated by t and then com-
puting the product–moment correlation coefficient. Defining
the collection of velocity pairs is subject to the same bias-
ing problems that were faced in the diffusion measurements.
Because of this, we make use of the same definition of parti-
cle trajectories as previously, using a starting region Rs and a
continuing region Rc. Since autocorrelations are based upon
velocities, constructed from the difference of two positions,
their calculation is more sensitive than the diffusion measure-
ments.

Autocorrelations in the experiments have been reported
previously [12]. To carry out autocorrelations in the x and
z directions, we made use of Rs = Rc = {80d < x <
100d, |y− yi| < 0.3d, 20d < z < 40d} and took snapshots in
intervals corresponding to exactly 0.01d of mean drop. Based
on these, velocities were computed on a scale of 0.1d by look-
ing at particle displacements ten frames apart.

The precise timescale on which velocities are computed
could potentially have a significant effect on the autocorre-
lation function, so to obtain the best match possible, the sim-
ulation snapshots were recorded at the same intervals corre-

sponding to a 0.01d drop, as in experiments. Initially, an au-
tocorrelation was attempted using the standard contact model
B, but the results were problematic. As shown by the dashed
gray lines in Fig. 15, the correlations in the x direction exhibit
chaotic oscillations at large times. This appears unphysical,
since after a particle has fallen by several times its diameter
and undergone many collisions with neighbors, it is velocity
is unlikely to be correlated with its previous velocity. The
problem seen in the graphs is due to the waves of velocity
moving though the system that were discussed in Section IV.
Since the waves are larger in the higher-numbered layers, the
autocorrelation oscillations are more significant there.

Several procedures were tried to improve these results. A
mean velocity subtraction per frame can mitigate the worst of
the oscillations, but there is still a significant amount of noise.
We therefore decided to switch to carrying out simulations us-
ing the particle model with kn = 2×106mg/d, that were pre-
viously shown to have fewer velocity waves. To increase the
amount of available data, we carried out a second drainage run
by taking the static packing for model D, rotating it by 180◦
around the x axis, and making the rough wall by freezing the
particles that were now in the range 0 < y < 1d. This creates
a second data set with a different particle configuration with-
out the need to generate a completely new packing by pouring.
Since the pouring process is the most time-consuming part of
the simulations, particularly for this contact model where a
smaller timestep is needed, it was best to avoid generating
more. The velocity measurements from the two simulations
were treated as a single ensemble of pairs (vi,vf ) that were
used to compute autocorrelations.

We also employed a spatial background mean flow using
a bilinear interpolation on a 4 × 5 grid. Without this subtrac-
tion, the plots look almost identical, except that the plots in the
higher layers are shifted upwards by a small amount and do
not tend to zero at large separations. For the x and z measure-
ments within layers, we employed Rs = Rc = {80d < x <
100d, |y − yi| < 0.3d, 20d < z < 40d}, and for the y mea-
surements we usedRc = {80d < x < 100d, 20d < z < 40d}
to continue trajectories the move to other layers. In addition,
a temporal mean velocity subtraction was applied in the x di-
rection to remove some of the velocity waves. The resulting
autocorrelation functions in the three directions are shown in
Fig. 15. The plots are a significant improvement over the re-
sults with the lower spring constant. Although some noise is
visible, the curves decay to zero for large separations. Nega-
tive correlations are visible for separations of around 0.5d in
all three directions and they are particularly strong for in the
y direction. We attribute this to confinement effects, where a
particle moving with a large y velocity will be likely to bounce
back after a contact with the neighboring layer. Such an effect
was not found in the experimental autocorrelation measure-
ments [12], as the particles were not tracked between layers.
For the first layer, there is evidence of a small peak in the au-
tocorrelation function at around 1d, although more testing is
necessary to determine if this feature is robust.

Figure 16 shows a comparison between the experimental
and simulation, plotted on a logarithmic scale. In the x and
z directions we see good agreement, particularly for layers 1
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tional lines are shown for the lower spring constant calculation with-
out a frame-by-frame correction, highlighting the problem with the
velocity waves, which create large chaotic oscillations in the auto-
correlation function, particularly for the higher-numbered layers.
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and 2, where the simulation measurements are less affected
by velocity waves. Further, it appears that the initial decay is
closer to an exponential decay, and long time decay tail such
as t−3/2 decay observed in (unsheared) dense elastic hard
spheres [46] is clearly not observed. However, it is difficult to
test if the remaining deviations from an exponential decay has
any fast power law tails such as been predicted by Otsuki and
Hayakawa [36] and Kumaran [35] in sheared granular flows.

While our results demonstrate the computation of autocor-
relations within the Discrete-Element Method, it is a signifi-
cantly larger computational challenge than many of the other
measurements considered in this study. Gaining detailed,
precise information about the decay would require smaller
timesteps and larger ensembles, both of which increase the
amount of computation needed.
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VI. CONCLUSION

For a wide variety of flow features that have been consid-
ered, our results have shown excellent, quantitative agreement
between index-matched experiment and DEM simulation with
the LAMMPS granular contact model using the commonly-
used parameters. Despite the two completely different pro-
cedures, we have been able to show close matches between
macroscopic flow features (eg. velocity profiles), as well as
microscopic particle properties (eg. number density profiles,
particle diffusion, and spatial velocity correlations). Our re-
sults provide validation that both techniques can be reliably
used to study granular flows. While both procedures have po-
tential shortcomings, such as interstitial fluid effects in exper-
iment at high flow rate, or approximations in the simulation
contact model, the fundamental physics of granular flow and
particle rearrangement appears largely similar.

This successful matching can be partially attributed to the
fact that the contact models employed in Discrete-Element
simulation are a close reproduction of the contact physics of
the index-matched flow. However, our results are also indica-
tive that many key features of slow, dense granular flow may
exhibit a “universality” across a wide variety of situations.
Despite small differences near the smooth wall, our results
showed that the velocity profile in the shearing region was
largely similar for friction values over the range from 0.2 to
0.4. This is consistent with previous work [20], where the
same result was shown for a larger range of 0.1 < µ < 0.9.
A small amount of polydispersity, while a critical issue in two
dimensional packings, appeared to have a minimal effect on
the velocity profiles and packing structure. Also, while there
is clear evidence of rate-dependent effects [22, 45] at faster
flow rates, our results suggest that in the slow, dense regime,
the total flow rate can be scaled out of the measurements, mak-
ing it much easier to quantitatively compare to experimental
results.

Despite the successes, our results do highlight several po-
tential areas of concern. In experiment, the inability to build a
complete three dimensional map of the particles means that a
number of properties of the flow cannot be quantified. When
presenting diffusion and autocorrelation measurements, the
importance of choosing trajectories was discussed, but in ex-
periment the approach was limited by the lack of information
when particles moved outside of the laser sheet.

In simulation, our study has highlighted several possible ar-
eas of concern. As discussed in the introduction, much of the
initial calibration of the contact model parameters was car-
ried out by examining macroscopic flow properties, and mi-
croscopic packing structure, and in general our results have
shown excellent agreement in these areas. However, our re-
sults suggest that for examining microscopic dynamical fea-
tures, such as autocorrelations, using a stiffer spring constant
may be required to achieve a reasonable match with realistic
flows.

The presence of velocity waves as described in Sec. IV also
presents a large cause for concern. Our results suggest that

the overriding factor in the generation of these waves is the
total system size, since they become progressively larger with
height. Again, we note that the original calibration of the
parameters, that occurred five years ago when less compu-
tational power was available, made use of much smaller sys-
tem sizes featuring 24,000 particles, meaning that the pack-
ings were small enough that these effects may not play a sig-
nificant role. The waves are undesirable for several reasons.
They occur on an intermediate timescale much larger than the
natural contact frequency, potentially interfering with a vari-
ety of measurements. There is also potential for particle con-
tacts to successively break and re-form during the passage of
a velocity wave, which may have a significant effect on the
history-dependent terms of the contact model.

Furthermore, the waves appear to have no analog in the ex-
perimental data. But it should be also noted that our study
does not provide enough evidence to show that these waves
are unphysical in all situations: it may be that particles com-
posed of a softer material such as acrylic glass, where a nor-
mal spring constant that is closer to that used in the simulation,
would show waves of this type, and we believe this could be
an interesting direction for further study. However, in previ-
ous studies, DEM simulations have been compared with the
body of theoretical and experimental results using hard mate-
rials, and when comparing rapid features of flow our results
suggest this should be done with caution.

Our results indicate that increasing the normal contact stiff-
ness by a factor of ten may be a useful remedy. While this
does not remove the waves completely, it does make them
smaller and more rapid, allowing for them to be more easily
removed by time-averaging. Since the simulation makes use
of a second order scheme, this requires a three-fold increase
in computational cost, which is reasonable.

Our results also suggest that the elastic waves may be more
problematic with Hertzian contacts as opposed to Hookean
contacts. In drawing this conclusion, it is important to
stress that this may not be a verdict on the relative merits
of the two contact models, but rather the specific method by
which Hertzian interactions have been incorporated into the
LAMMPS literature, by introducing a prefactor which is al-
ways significantly smaller than 1, effectively decreasing the
oscillation timescale of normal elastic interactions. Higher
values of kn may be appropriate when the Hertzian prefactor
is being used.
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